

Видео микроскоп ҮХ-АК16

Основные части микроскопа:

- 1. Дисплейный блок
- 2. ЖК-монитор
- 3. Разъем питания
- 4. Окуляр
- 5. Тубус
- 6. Револьверная головка для объективов
- 7. Объектив
- 8. Предметный столик
- 9. Диск с цветными фильтрами
- 10. Светодиодный источник освещения (проходящий свет)
- 11. Препаратоводитель
- 12. Фокусировочное колесико
- 13. Регулятор яркости верхнего источника освещения
- 14. Регулятор яркости светодиодного источника освещения (проходящий свет)
- 15. Барашек для продольного перемещения препарата
- 16. Барашек для поперечного перемещения препарата
- 17. Рычаг для закрепления зажимной папки
- 18. Зажимная лапка
- 19. Зажимной винт
- 20. Микропрепарат (в данном случае готовый микропрепарат)

1. Место для установки микроскопа. Типы разъемов

Микроскоп необходимо собирать в специально выбранном месте. Прежде всего, следует убедиться, что прибор будет располагаться на устойчивой поверхности вдали от источников вибрации.

Разъем питания (220 В или 110 В) используется при наблюдениях, проводимых с помощью электрического светодиодного источника освещения и электронного ЖК-окуляра (дисплейного блока).

Кроме того, микроскоп имеет интерфейс для подключения к ПК (разъем USB).

2. Начало работы. Электрический светодиодный источник освещения

Перед началом работы убедитесь, что регулятор яркости осветительного устройства установлен в положение ОFF (ВЫКЛ.). Микроскоп оснащен двумя такими устройствами: источник проходящего света находится снизу, а источник прямого света — над предметным столиком. Прозрачные образцы исследуются в проходящем свете. Источник прямого света (верхнее осветительное устройство) используется при наблюдении твердых непрозрачных образцов. Яркость освещения выбирается с помощью регулятора. Для начала работы подсоедините блок питания, который входит в комплект поставки микроскопа, к соответствующему разъему, расположенному в задней части основания прибора, и к подходящей розетке (220 В или 110 В). После этого включите требуемое осветительное устройство с помощью регулятора и, вращая его, выберите необходимую яркость света.

3. Наблюдение

3.1 Основные принципы наблюдений под микроскопом

После того как вы собрали микроскоп и настроили освещение, следуйте изложенным ниже правилам.

а) Сначала проведите каждое наблюдение с самым маленьким увеличением, поскольку при этом исследуемый объект легче всего отцентрировать и установить в заданное положение.

Опустите предметный столик вниз до упора, воспользовавшись фокусировочным колесиком, и поверните револьверную головку, чтобы выбрать самое маленькое увеличение (объектив с 4-кратным увеличением должен располагаться на вертикальной прямой).

- b) Начните с простых наблюдений. Разместите готовый микропрепарат, зафиксировав его в лапках препаратоводителя, на предметном столике непосредственно под объективом. Для этого отведите в сторону рычаг, служащий для закрепления зажимной лапки, установите предметное стекло с образцом в препаратоводитель и осторожно верните лапку в первоначальное положение. Исследуемый объект должен находиться в точности напротив используемого источника освещения. Чтобы добиться этого, воспользуйтесь двумя микрометрическими винтами с рифленой головкой, расположенными на основании препаратоводителя. Это так называемые барашки для перемещения препарата. Вращая их, можно перемещать образец как влево или вправо, так и вперед или назад и устанавливать его в точно заданное положение.
- с) Включите ЖК-монитор, нажав выключатель питания, расположенный на корпусе дисплейного блока. При этом загорится красный индикатор работы монитора. Следя за изображением на нем, осторожно вращайте фокусировочное колесико, пока изображение образца не станет резким. С помощью препаратоводителя вы можете переместить образец так, чтобы он отображался в требуемой области ЖК-монитора.
- d) Чтобы получить большее увеличение, поверните револьверную головку и выберите соответствующий объектив (с увеличением 10X и 40X).

Замечание:

Перед сменой объектива опустите предметный столик вниз до упора. В противном случае объектив может быть поврежден.

При большем увеличении для формирования качественного изображения потребуется большая яркость.

Важные замечания:

Во время исследования некоторых препаратов выбор большего увеличения не приведет к улучшению качества картинки. Увеличение меняют, устанавливая различные объективы. При этом также меняется резкость изображения, которую необходимо настраивать с помощью фокусировочного колесика. С микроскопом следует обращаться очень осторожно. Если вы поднимете предметный столик слишком быстро, объектив и образец могут быть повреждены в результате соприкосновения друг с другом.

- е) ЖК-окуляр имеет увеличение 10X. В сочетании с объективом, который характеризуется кратностью 4X, общее увеличение системы составит 40X, то есть участок образца размером 1 мм отобразится на мониторе как участок размером 40 мм. Если объектив имеет кратность 10X, то общее увеличение будет равняться 100X, а для объектива с кратностью 40X оно составит 400X.
- f) Диск с цветными фильтрами, устанавливаемый под предметным столиком, позволяет облегчить наблюдение очень ярких или прозрачных препаратов. Цвет фильтра необходимо выбирать с учетом параметров исследуемого образца. Фильтр помогает лучше различать компоненты слабоокрашенных или прозрачных объектов (например крахмальные зерна или одноклеточные организмы).

3.2 Работа дисплейного блока

3.2.1 Наблюдение на дисплее

После включения ЖК-монитора (см. раздел 3.1c) на нем появляется изображение объекта в реальном времени, а также отображаются три разных элемента.

- а) Внизу справа указан объем свободной памяти дисплейного блока, предназначенной для сохранения изображений. Над ним расположена область для циклического просмотра графических файлов памяти.
- b) В центре, рядом с символом увеличительного стекла, представлен коэффициент электронного увеличения. Пользуясь кнопками со стрелкой вверх или вниз, можно задать этот коэффициент в диапазоне от 1 до 8. Для быстрого запуска удерживайте кнопки нажатыми.
- с) В верхнем правом углу отображается символ камеры (режим фотосъемки или видеозаписи).

3.2.2 Фотографирование

Получаемое в реальном времени изображение фотографируется при нажатии кнопки SNAP (ФОТОГРАФИРОВАТЬ). Снимок сохраняется в памяти.

3.2.3 Управление фотографиями

Повторное нажатие кнопки МОDE (РЕЖИМ) приведет к переходу из режима видеозаписи в режим управления фотографиями. На дисплее появятся доступные видео-файлы и фотографии. С помощью кнопок LEFT (ВЛЕВО) или RIGHT (ВПРАВО) можно выбрать необходимый файл. Чтобы вновь вывести на дисплей получаемое в реальном времени изображение, нажмите кнопку МОDE.

Чтобы получить доступ к строке меню, по которому можно перемещаться с помощью соответствующих кнопок со стрелками, нажмите кнопку MENU (МЕНЮ), когда на экране отображается фотография (проигрывается видеозапись).

Меню позволяет менять некоторые настройки и подтверждать внесенные изменения с помощью кнопки ввода ОК (ПОДТВЕРДИТЬ).

Краткое описание меню:

- а) Delete (Удалить). С помощью кнопки ОК можно выбрать пункт Single (Отдельный) (удалить выбранный файл изображения), All (Все) (удалить все файлы изображений) или Select (Выбрать) (можно выбрать файл, который следует удалить).
- b) Copy to Card (Скопировать на карточку).
- с) Slide show (Покадровый вывод изображений).
- е) Protect (Защитить) (защита файлов изображений от перезаписи и удаления). С помощью кнопки ОК можно выбрать пункт Single (защитить выбранный файл изображения), All (защитить все файлы изображений) или Select (можно выбрать файл, который следует защитить).

3.2.4 Изменение настроек

Нажмите кнопку MENU, когда на дисплее отображается получаемая в реальном времени картинка, чтобы вызвать строку меню, по которому можно перемещаться с помощью соответствующих кнопок со стрелками.

Меню позволяют менять некоторые настройки и подтверждать внесенные изменения с помощью кнопки ввода ОК.

Краткое описание меню:

- а) Size (Размер) (разрешение изображения; количество пикселей по ширине и высоте):
- 12M (4023×3024), 8M (3264×2448), 5M (2560×1290), 3M (2048×1536), 2M (1600×1200), 1,3M (1280×1024), VGA (640×480).
- b) Quality (Качество): Fine (Высокое), Standard (Стандартное), Economy (Экономичное).
- c) EV (Компенсация экспозиции): можно выбрать значения от -2,0 до +2,0 EV.
- d) White Balance (Баланс белого). По умолчанию выбрана настройка Auto (Автоматическая установка баланса белого).
- e) ISO (Светочувствительность). По умолчанию выбрана настройка Auto (Автоматическая установка светочувствительности).
- f) Color (Цвет): Standard (Стандартный), Vivid (Яркий), Sepia (Сепия), Monochrome (Черно-белый).
- g) Saturation (Цветовая насыщенность): Normal (Стандартная), High (Высокая), Low (Низкая).
- h) Sharpness (Резкость): Hard(Сильная), Normal (Стадартная), Soft (Слабая).
- i) Time Stamp (Метка даты/времени): OFF (Откл.), Date only (Только дата) (снабжает датой изображение или видеозапись), Date &Time (Дата и время) (снабжает датой и временем изображение или видеозапись).

3.2.5 Настройки камеры

Нажмите кнопку MENU, когда на дисплее отображается получаемая в реальном времени картинка, чтобы вызвать строку меню, по которому можно перемещаться с помощью соответствующих кнопок со стрелками. Задать настройки камеры можно с помощью кнопки RIGHT.

- а) Format (Форматирование): Execute (Выполнить) (предупреждение: все файлы будут удалены), Cancel (Отмена).
- b) Language (Язык): На выбор предлагается девять языков. По умолчанию выбран английский.
- с) Auto off (Автоматическое отключение): 1 Min (1 мин.), 3 Min (3 мин.), 5 Min (5 мин.), оff (откл.).
- d) Sys. Reset (Перезапуск системы): Execute (Выполнить) (предупреждение: будут восстановлены заданные по умолчанию настройки), Cancel (Отмена).
- e) Light Freq (Частота оптического диапазона): 60 Hz (60 Гц), 50 Hz (50 Гц).
- f) TV Output (ТВ-выход): NTSC, PAL.
- g) Date Input (Ввод даты): Off (Откл.), Set (Задать).
- h) USB: PC Cam (Камера для подключения к компьютеру), Disk Drive (Дисковое запоминающее устройство), Printer (Принтер).

3.2.6 Видеозапись

Нажмите кнопку MENU, когда в режиме фотосъемки на дисплее отображается получаемая в реальном времени картинка. В верхнем левом углу дисплея появится символ видеокамеры, а справа внизу будет указан объем свободной памяти, предназначенной для хранения фотографий. Съемка производится с помощью кнопки SNAP. При повторном нажатии кнопки фотографирование прекращается. Символ видеокамеры мигает во время съемки, длительность которой указывается на дисплее. С помощью кнопок MENU и ОК в меню можно выбрать разрешения QVGA(320×240) или VGA(640×480). В дальнейшем можно использовать компенсацию экспозиции, чтобы получить такой же эффект, как для фотографий.

4. Вывод и передача изображений

Видеомикроскоп позволяет выводить и сохранять изображения тремя способами.

- а) Изображения можно просматривать непосредственно на ЖК-мониторе. Прибор имеет встроенную память объемом 128 Мб, предназначенную для хранения фотографий (см. раздел 3.2).
- b) Фотоснимки можно сохранять на подходящей карте памяти (SD = Secure Digital [защищенная цифровая]) (НЕ ВХОДИТ В КОМПЛЕКТ ПОСТАВКИ МИКРОСКОПА). Слот для карты памяти расположен в нижней части дисплейного модуля рядом с разъемом USB. Чтобы воспользоваться картой, вставьте ее в слот вперед контактами. Когда карта встанет на место, вы услышите тихий щелчок. Если она подключена правильно, в верхней части ЖК-монитора появится соответствующий символ. Он исчезнет, если вытащить карту из слота. Для этого нажмите на карту и после щелчка извлеките ее.
- с) Фотографии могут быть сохранены в памяти ПК, подключенного к микроскопу посредством поставляемого вместе с ним USB-кабеля. Соответствующий порт находится в нижней части дисплейного модуля рядом со слотом для карты памяти. Подсоедините меньший по размеру штекер типа В к разъему микроскопа, а больший по размеру штекер типа А к свободному USB-порту компьютера. После успешного подключения операционная система сможет опознать новое оборудование и инициализирует два новых диска.

Они получают обозначения «съемный носитель данных е» и «съемный носитель данных f», присвоенные буквы при этом зависят от количества логических дисков компьютера. Доступ к этим носителям осуществляется с рабочей станции, а также через Проводник Windows. Первый съемный диск представляет собой встроенную память дисплейного блока, второй содержит данные, сохраненные на карте памяти, если она используется.

Предупреждение:

Во время съемки микроскоп не должен быть подключен к компьютеру посредством USB-кабеля. Прежде чем вытаскивать USB-кабель из разъема или отключать питание дисплейного блока, необходимо программно извлечь этот блок (съемный носитель данных е:) из разъема с помощью соответствующей утилиты и «деактивировать» карту (съемный носитель данных f:). В противном случае возможны сбои в работе компьютера и даже потеря данных.

5. Технические характеристики

Системные требования для подключения USB-устройства/использования карты памяти:

Операционная система Windows

Материнская плата с разъемом USB

Средства мультимедиа (например программа для обработки изображений, проигрыватель для просмотра фильмов)

Карта памяти

Устройство для чтения карт памяти

6. Наблюдения с использованием окуляра

Снимите ЖК-монитор с тубуса и замените его обычным окуляром.

Разместите готовый микропрепарат, зафиксировав его в лапках препаратоводителя, на предметном столике непосредственно под объективом. Для этого отведите в сторону рычаг, служащий для закрепления зажимной лапки, установите предметное стекло с образцом в препаратоводитель и осторожно верните лапку в первоначальное положение. Исследуемый объект должен находиться в точности напротив используемого источника освещения. Чтобы добиться этого, воспользуйтесь двумя микрометрическими винтами с рифленой головкой, расположенными на основании препаратоводителя. Это так называемые барашки для перемещения препарата. Вращая их, можно перемещать образец как влево или вправо, так и вперед или назад и устанавливать его в точно заданное положение.

После настройки освещения посмотрите в окуляр.

Сначала проведите каждое наблюдение с самым маленьким увеличением микроскопа. Вращайте револьверную головку, пока объектив с 4-кратным увеличением не окажется над центром основания препаратоводителя (объектив встанет на место, когда займет правильное положение). При совместном использовании окуляра с увеличением 10X и объектива с увеличением 4X общее увеличение составляет 40X. Оно равно произведению увеличений окуляра и объектива (например $4\times10=40$).

Наведите микроскоп на резкость, медленно вращая фокусировочное колесико, пока в окуляре не сформируется изображение.

Диск с цветными фильтрами, устанавливаемый под предметным столиком, позволяет облегчить наблюдение очень ярких или прозрачных препаратов. Цвет фильтра необходимо выбирать с учетом параметров исследуемого образца. Фильтр помогает лучше различать компоненты слабоокрашенных или прозрачных объектов (например крахмальные зерна или одноклеточные организмы).

Вращая револьверную головку, установите над образцом объектив с увеличением 10X или 40X, чтобы получить общее увеличение 100X или 400X соответственно, или воспользуйтесь объективом с увеличением 16X.

При наблюдениях с высоким увеличением фокусирование затрудняется, из-за чего объектив приходится сильно приближать к образцу, чтобы навестись на резкость. Во избежание повреждений объектива и образца не допускайте их соприкосновения друг с другом.

7. Уход и техническое обслуживание

Микроскоп представляет собой высококачественный оптический прибор. Необходимо содержать микроскоп в чистоте и не допускать его контакта с водой.

Не оставляйте отпечатки пальцев на оптических поверхностях.

Для очистки микроскопа от пыли и грязи сначала необходимо использовать мягкую кисточку. Затем загрязненную поверхность следует протереть мягкой тканью, не оставляющей ворса. Для удаления отпечатков пальцев с оптических поверхностей лучше всего использовать такую же ткань, смоченную спиртосодержащей жидкостью.

По завершении наблюдений необходимо убирать микроскоп и дополнительные принадлежности в предназначенные для их хранения контейнеры.

Помните, что содержащийся в хорошем состоянии микроскоп годами остается в исправности, сохраняя высокие функциональные качества.

