Инструкция к цифровому мультиметру ATTEN AT-8045

Содержание:

1.	Общее описание	
	Характеристики	
	Описание панели	-
	Эксплуатация	-
	Уход за мультиметром	,
	t neg swinjubining ip em	

1. Общее описание

Данный мультиметр с 4 $1\2$ разрядным дисплеем. Используется для измерения напряжения постоянного и переменного тока, силы постоянного и переменного тока, сопротивления, емкости, частоты, коэффициента усиления транзисторов, проверки диодов и «прозвонки» соединений. Диапазон измеряемого напряжения: 0-1000B или максимальное значение переменного тока, возможное разрешение: $10\mu B$, измерение тока до 20A. Мультиметр также имеет функцию автоматической смены полярности, подсветки экрана и визуального считывания.

Мультиметр предусматривает высокоточное измерение действующего значения переменного тока, а также измерение полосы пропускания и фактической величины любой формы сигнала.

2. Характеристики

Основные:

- Мощность: 220В\110В переменного тока.
- Ручной выбор диапазонов.
- Большой 4 1\2 разрядный ЖК-дисплей с подсветкой (размеры дисплея: 75×40мм), макс. 19999.
- Диапазон измеряемого напряжения до 1000В постоянного тока и 750В переменного тока.
- Измерение силы постоянного и переменного тока до 20А.
- Частотный отклик напряжения переменного тока: 50кГц.
- Измерение частоты, сопротивления, емкостного сопротивления, проверки триода, диода и «прозвонки» соединений.
- Защита от высокого напряжения: действующее значение 250В.
- Рабочая температура: 0-40°C, <75% относительной влажности.
- Габариты: 260мм×220мм×82мм.
- Приблизительный вес: 1 кг.

Технические характеристики

Погрешность: ±(% данных на экране + минимальная действительная единица счета)

Предварительный нагрев: 30 мин.

Температура для гарантированной точности показаний: (23±5)°C, относительная влажность <75%.

Напряжение постоянного тока (DCV)

Диапазон	Погрешность	Разрешение
200мВ	±(0.5%+3)	10uV
2B		100uV
20B		1mV
200B		10mV
1000B	±(0.1%+5)	100mV

Входное сопротивление: 10мОм для всех диапазонов.

Защита от высокого напряжения: диапазон 200mV: 250B постоянного тока или максимальное показание переменного тока.

Другие диапазоны: 1000В постоянного тока максимальное показание переменного тока.

Напряжение переменного тока (ACV)

Диапазон	Входное	Погрешность	Разрешение
	напряжение		
200mV	50Гц-50кГц	±(0.8%+80)	10uV
2V	50Гц-20кГц		100uV
20V			1mV
200V	50Гц-5кГц		10mV
1000V	50Гц-400Гц	±(1.0%+50)	100mV

Для гарантированной точности входные данные должны быть более 10% диапазона.

Входное сопротивление: 2мОм для всех диапазонов.

Защита от высокого напряжения: диапазон 200mV: 250B постоянного тока или максимальное показание переменного тока.

Другие диапазоны: 1000В постоянного тока максимальное показание переменного тока.

Сила постоянного тока (DCA)

Диапазон	Погрешность	Разрешение
20 mV	±(0.35%+10)	1uA
200 mV		10uA
2A	±(0.8%+10)	100uA
20A		1mA

Максимальное падение входного напряжения: 200mV

Максимальный ток на входе: 20А (в течение 15с.)

Защита от высокого напряжения: $2A\250B$ плавкий предохранитель, $20A\250B$ плавкий предохранитель.

Сила переменного тока (АСА)

Диапазон	Входное напряжение	Погрешность	Разрешение
200mA	50Гц-5кГц	±(0.8%+80)	1uA
2A	50Гц-400Гц	±(1.0%+50)	10uA
20A			1mA

Максимальное падение входного напряжения: 200mV

Максимальный ток на входе: 20А (в течение 15с.)

Защита от высокого напряжения: 2А\250В плавкий предохранитель, 20А\250В плавкий предохранитель.

Ёмкость(САР)

Диапазон	Погрешность	Разрешение
20nF	$\pm (3.5\% + 20)$	1pF
2uF		100pF
200uF	±(1.0%+50)	10nF

Измерение частоты: приблизительно 400Гц.

Защита от высокого напряжения: 36В постоянного тока или максимальное значение переменного тока.

Сопротивление (О)

Диапазон	Погрешность	Разрешение
200 Ом	±(0.1%+20)	0.01Ом
2кОм	±(0.1%+5)	0.1Ом
20кОм		1 Ом
200кОм		10 Ом
2МОм		100Ом
20МОм	±(0.4%+5)	1кОм

Напряжение незамкнутой цепи: менее 3В.

Защита от высокого напряжения: 250В постоянного тока или максимальное значение переменного тока.

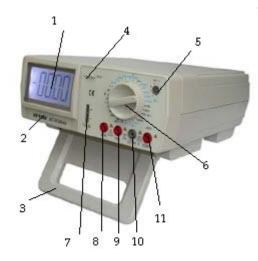
Частота (FREQ.)

Диапазон	Погрешность	Разрешение
20 κΓιμ	±(1.0%+20)	1Гц
200кГц		10Гц

Входная чувствительность: действующее значение 500mV

Защита от высокого напряжения: 250В постоянного тока или максимальное значение переменного тока (в течение 15 с.).

Измерение коэффициента усиления транзисторов (hFE):


Диапазон	Показания на дисплее	Условия проверки
hFE, NPN или PNP	0~1000.0	Основной ток
		приблизительно 10μΑ,
		напряжение приблизительно
		3B.

Проверка диодов и «прозвонка сообщений»:

Диапазон	Описание	Условия проверки
→ •1))	Измерительные данные являются	Прямая сила постоянного
	приблизительным значением прямого	тока приблизительно 1mA,
	напряжения, если тестируемое сопротивление	обратное напряжение
	менее 70Ом±20Ом, ото прозвучит звуковой	постоянного тока менее 3В.
	сигнал и на дисплее появятся данные.	
	Напряжение открытой цепи 3В.	

Защита от высокого напряжения: 250В постоянного тока или максимальное значение переменного тока.

3. Описание панели

- 1. ЖК-дисплей.
- 2. Модель дисплея
- 3. Подставка
- 4. Кнопка удерживания данных
- 5. Гнездо hFE
- 6. Поворотный переключатель
- 7. Гнездо для измерения емкостного сопротивления.
- 8. Гнездо 20А.
- 9. Гнездо для тока менее 2А.
- 10. Гнездо СОМ.
- 11. Гнездо VΩНz

4. Эксплуатация

Прибор работает при 220В\110В переменного тока. Сначала подключите питание, затем нажмите на переключатель питания. Гнезда на передней панели способны измерять до 1000В, 20А и 2-мОм. Примечание: Прежде чем преступать к измерениям, убедитесь, что спецификации измеряемых данных не выходят за пределы указанных на передней панели.

- 1. Подключите черный измерительный щуп к гнезду COM, а красный к гнезду VΩHz
- 2. Установите поворотный переключатель в положение DCV (напряжение постоянного тока), подключите щупы к измеряемой цепи, на дисплее появятся данные напряжения и полярности. Примечание (1):
- Если диапазон измеряемого напряжения не известен заранее, начните с самого высокого лиапазона.
- Появление на экране «1» означает, что необходимо установить диапазон повыше.
- Входное напряжение не должно превышать 1000В.
- Будьте осторожны при измерении высокого напряжения.

Напряжение переменного тока (ACV)

- 1. Подключите красный измерительный щуп к гнезду $V \setminus \Omega$, а черный к гнезду COM.
- 2. Установите поворотный переключатель в положение ACV (напряжение постоянного тока), подключите измерительные щупы к цепи измерения. Примечание (2):
- См. примечание (1) для измерения постоянного тока
- Входное напряжение не должно превышать 1000В, т.к это может стать причиной повреждения прибора.
- Для получения более точных показаний выбирайте правильный диапазон.
- В диапазоне ACV (напряжение переменного тока) показания на дисплее могут быть не равны нулю, это не повлияет на измерительные данные.

Сила постоянного тока (DCA)

- 1. Подключите черный измерительный щуп к гнезду "COM", а красный к гнезду "mA" (макс.2A) или к гнезду «20A».
- 2. Установите переключатель в положение DCA, подключите измерительные щупы к цепи измерения, на дисплее появятся данные напряжения и полярности.

Примечание (3):

- Если диапазон измеряемого тока не известен заранее, начните с самого высокого.
- Появление на экране «1» означает, что необходимо установить диапазон повыше.
- Максимальный входной ток для диапазона "mA" 2A, а для диапазона «20A» 20A, превышение этих лимитов может привести к поломке предохранителя. Будьте осторожны при измерении в диапазоне 20A, при высоком токе цепь нагревается и может быть повреждена.
- Максимальное падение напряжения 200мВ.

Сила переменного тока (АСА)

- 1. Подключите черный измерительный щуп к гнезду "COM", а красный к гнезду «mA» (макс.2A) или к гнезду «20A».
- 2. Установите переключатель в положение АСА, подключите измерительные щупы к цепи измерения, на дисплее появятся данные напряжения и полярности.
- 3. В диапазоне АСА (сила переменного тока) показания на дисплее могут быть не равны нулю, это не повлияет на данные измерений.

Примечание (4)

- Для измерения силы постоянного тока см. примечание (3)
- Для получения более точных показаний выбирайте правильный диапазон.

Измерение сопротивления:

- 1. Подключите красный измерительный щуп к гнезду $V \setminus \Omega$, а черный к гнезду COM (полярность красного щупа +)
- 2. Установите переключатель в положение Ω , подключите щупы к цепи измерения. Примечание (5):
- 1. Если сопротивление превышает максимальный показатель выбранного диапазона, то на экране появится «1». Установите переключатель на более высокое значение. Если сопротивление равно или превышает 1Мом, то стабилизация данных займет несколько секунд.
- 2. Если входное гнездо в незамкнутой цепи, то на дисплее появится "OL".
- 3. Во избежание удара током до проведения измерения сопротивления отключите питание от проверяемого прибора и разрядите все конденсаторы.
- 4. Напряжение разомкнутой цепи 3В.

Проверка диода и «прозвонка» соединений.

- 1. Вставьте черный щуп в отрицательное гнездо COM, а красный щуп в положительное гнездо $V\\Omega$.
- 2. Установите переключатель в диапазон диода, подключите измерительные щупы к диоду или проверяемой цепи.
- 3. При проверке диода на экране появится падение прямого напряжения, а при «прозвонке» соединений прозвучит звуковой сигнал, если сопротивление между измерительными щупами менее 70 Ом±20 Ом.

Примечание (6):

- 1. Если входное гнездо в незамкнутой цепи, то на дисплее появится ""1".
- 2. Измеряемый диод имеет силу тока 1мА.
- 3. На экране появится падение прямого напряжения в мили вольтах или сообщение о перегрузке, если диод перепутан.

Измерение частоты:

- 1. Подключите измерительные щупы или экранированный кабель к разъему $V \setminus \Omega$ или COM.
- 2. Установите переключатель на диапазон частоты, коснитесь наконечниками щупов проверяемой электрической цепи.

Примечание (7):

1. Входное напряжение не должно быть выше действующего значения 220\110В, в противном случае данные могут быть искажены.

- 2. При работе с мультиметром в шумном помещении желательно использовать экранированный кабель.
- 3. Будьте осторожны при измерении высокого напряжения.

Измерение емкостного сопротивления:

- 1. Установите переключатель в диапазон "F".
- 2. Установите измеряемый конденсатор в гнездо "Сх" соблюдая полярность, на дисплее появятся данные емкостного сопротивления.

Примечание (8):

- 1. Не измеряйте напряжение или ток при помощи гнезда "Сх".
- 2. Полностью разрядите конденсаторы, чтобы не повредить мультиметр.
- 3. Если входной диапазон 200 иF, то стабилизация данных займет несколько секунд.
- 4. В диапазоне "F" на экране не будет нуля, это не повлияет на точность измерительных данных.

Проверка триода:

- 1. Установите переключатель в диапазон hFE.
- 2. При проверке типа триода (NPN или PNP) установите эмиттер, основу и коллекторные концы.

5. Уход за мультиметром

Во избежание удара током перед заменой каких-либо частей мультиметра отсоедините все шнуры и входные сигналы, при замене предохранителя не забывайте о следующих характеристиках:

- 1. Силовой предохранитель: 200mA\250V.
- 2. Предохранитель для измерения тока: 2A\250V и 20A\250V.

Предохранители должны заменять квалифицированные специалисты.

Примечание (9):

- 1. Мультиметр и измерительные щупы должны быть всегда чистыми и сухими.
- 2. Не используйте растворители для очистки поверхности мультиметра.
- 3. Не эксплуатируйте мультиметр в помещении с высокой температурой или сильным магнитным излучением.

